
SMART CONTRACT AUDIT

September 16th 2022 | v.	1.0

90
score

PASS
Zokyo Security has concluded that
this smart contract passes security
qualifications to be listed on digital
asset exchanges.

1

TokensFarm Smart Contract Audit

This document outlines the overall security of the TokensFarm smart contracts evaluated by
the Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the TokensFarm smart contract
codebase for quality, security, and correctness.

Contract Status

low Risk

Testable Code

95% of the code is testable, which corresponds the standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the EVM network’s fast-paced and rapidly
changing environment, we recommend that the TokensFarm team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

2

TokensFarm Smart Contract Audit

6Structure​ ​and​ ​Organization​ ​of​ ​the Document

5Protocol Overview

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

7Complete Analysis

. . .

19Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by the Zokyo Security team

3

TokensFarm Smart Contract Audit

The source code of the smart contract was taken from the TokensFarm repository:  
ttps://github.com/Tokensfarm/tokensfarm-contracts

Initial commit: 43e0e617143d209dacb6f8c71e31c53434a08ef4

Final commit: a2ca8cd85b7a5d42a737e9f3c7c7ef73bdb28b1d

Auditing Strategy and Techniques Applied

. . .

Within the scope of this audit, Zokyo auditors have reviewed the following contracts:

� PerpetualTokensFarmSDK.sol

� PerpetualTokensFarm.sol

� TokensFarmSDK.sol

� TokensFarm.sol

� TokensFarmFactory.sol

� TokensFarmSDKFactory.sol

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;
The documentation and code comments match the logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices, efficiently using resources without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the most resent vulnerabilities;
Meets best practices in code readability, etc.

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of TokensFarm smart contracts. To do so, the code was reviewed line by line
by our smart contract developers, who documented even minor issues as they were
discovered. A part of this work included writing a unit test suite using the Truffle testing
framework. In summary, our strategies consisted mostly of manual collaboration between
multiple team members at each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough manual review of the
codebase line by line.

4

TokensFarm Smart Contract Audit

EXECUTIVE Summary

. . .

 During the audit, the Zokyo Security team has audited the whole set of contracts within the
scope. The contracts consist of staking farm contracts, SDK version of contracts and factories
for creating and managing instances of staking farm contracts.

 The goal of the audit was to ensure the corectness of staking and reward mechanism,
ensure safety of users’ funds, validate the contract code against the list of common security
vulnerabilities, check that the best Solidity practises are applied to reduce gas spendings.

 There were several high and medium-severity issues found, as well as some informational
ones. The issues were connected with the correctness of the work with Ether, creating and
withdrawing stakes. Other issues were connected with the necessity of adding extra
validations, gas optimizations and logic clarifications. Nevertheless, all the issues were
successfully resolved or verified by the TokensFarm team. After all the fixes, the contracts
have passed all security tests.

 It should be mentioned that all the contracts are upgradable, which means that the admin
of the contract can upgrade its logic at any time.

 The overall security of the contracts is high enough. The TokensFarm team has prepared a
solid set of tests to ensure the correctness of contract logic. The Zokyo Security team has
prepared our own set of unit-tests as well in order to validate crucial bussiness logic scenarios.
It should also be mentioned that due to the complexity and the size of the contracts, they lack
readbility. We recommend the TokensFarm team to prepare a detailed documentation on the
logic of the contracts.

5

TokensFarm Smart Contract Audit

. . .protocol overview

 TokensFarm protocol is a staking protocol that allows users to lock staking tokens and
receive reward tokens over time. The protocol consists of two versions of staking: original
and SDK staking. Both original and SDK contracts are the composites of TokensFarm,
PerpetualTokensFarm and TokensFarmFactory contracts.

 The main difference between original and SDK contracts is that SDK contracts don’t
actually store any staking tokens transferred from users to contract’s balance. Instead, all
the crucial functions such as deposit(), makeDepositRequest(), finalizeDeposit(),
noticeReducedStake() and noticeReducedStakeWithoutStakeId() can be called only by the
Contract Admin for users. This way, there is no risk of stealing staking tokens from the
contract’s balance.

 The TokensFarm contract allows users to deposit their staking tokens and start earning
rewards on their stakes. Each deposit is divided into stakes. In case there is a warmup
period, the user has to make a deposit request and finalize it after the warmup period is
finished. Users can withdraw their stake at any time in case early withdrawal is allowed. In
this case, users still have to wait for minimal time to stake in order to receive earned
rewards. Otherwise, the rewards can be burnt or redistributed, based on the contract’s
options. There is a single reward period, during which users can deposit and earn
rewards. While the reward period is still on, it can be extended by funding or
redistributing more rewards.

 The PerpetualTokensFarm contract is similar to the TokensFarm contract. The only
difference is that the reward period is separated into epochs. Users can deposit and earn
rewards only in the current epoch. Once the epoch is over, the owner of the contract can
create a new epoch.

 The SDK version of the contracts also allows users to earn rewards based on their
stakes. The reward period mechanism is similar to the original version of the contracts.
The main difference is that users don’t have to transfer their tokens to the staking
contract. Instead, the admin creates and withdraws stakes for users.

6

TokensFarm Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost,
allocated incorrectly,
or otherwise result in a significant loss.

Critical

For the ease of navigation, document’s sections are arranged from the most critical to the
least critical. Issues are tagged “Resolved” or “Unresolved” depending on whether they have
been fixed or addressed. Furthermore, the severity of each issue is written as assessed by the
risk of exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

. . .

7

TokensFarm Smart Contract Audit

Complete​ ​Analysis

. . .

High-1

Usage of msg.value in the loop.

PerpetualTokensFarmSDK.sol, function noticeReducedStakeWithoutStakeId(), line 1433.

TokensFarmSDK.sol, function noticeReducedStakeWithoutStakeId(), line 1451.
The
_payoutRewardsAndUpdateState() function is executed multiple times in the loop. There is a
call of the _erc20Transfer() function in this function, where msg.value is used and is added to
the `totalFeeCollectedETH` storage variable. This way, the same msg.value is added multiple
times. This can potentially prevent collecting ETH fees. Reference: https://github.com/crytic/
slither/wiki/Detector-Documentation/#msgvalue-inside-a-loop

Recommendation:

Avoid using msg.value in the loop. Add msg.value only once to `totalFeeCollectedETH`.

High-2

The value in `idInList` mapping can be wrong.

TokensFarm.sol: function finaliseDeposit(), line 1103.

TokensFarmSDK.sol: function finaliseDeposit(), line 1061.
PerpetualTokensFarmSDK.sol:
function finaliseDeposit(), line 1114.
PerpetualTokensFarm.sol: function finaliseDeposit(), line
1203.
In case the user has doesn’t have any deposit requests, they get removed from the
`waitingList` and their ID in the waiting list is given to the last user in the `waitingList`.
However, the value in the `idInList` mapping is not updated for `lastUserInWaitingListArray`.
Due to this, the finalization of the request for `lastUserInWaitingListArray` can be blocked.

Recommendation:

Update the value in the `idInList` mapping for `lastUserInWaitingListArray` with
`deletedUserId`. Delete the value from the `idInList` mapping for the user. Take in account  
that `lastUserInWaitingListArray` can be equal to `user` in case there is only one address  
in the waiting list.

8

TokensFarm Smart Contract Audit

. . .
High-3

Users can withdraw the same stake more than once with the emergency withdrawal
function.

TokensFarm.sol: function emergencyWithdraw().

PerpetualTokensFarm.sol: function emergencyWithdraw().
Users can execute the
emergencyWithdraw() function with the same stake, even when the amount of the stake is 0.
Due to this, the `participants` array is updated every time, deleting the first user from the
array. This way, users can delete all users from the `participants` array and block all
withdrawal functions to them.

Recommendation:

Do not let users conduct emergency withdrawal of the same stake more than once.

High-4

Wrong stake amount is stored.

PerpetualTokensFarm.sol: function _deposit(), line 1083.

The `_amount` parameter is stored in `stake.amount`. In case there is a stake fee, a greater
amount would be stored instead of the value after taking the fee.

Recommendation:

Store `stakedAmount` in `stake.amount`.

9

TokensFarm Smart Contract Audit

. . .
Medium-1

User’s stake can be reduced before stakes are finalized.

PerpetualTokensFarmSDK.sol

TokensFarmSDK.sol

During the execution of the makeDepositRequest() function, the value in the
`totalActiveStakeAmount[user]` mapping is updated. This value is used in the
noticeReducedStakeWithoutStakeId() function to verify that the user has sufficient stake
amount. In case this function is called before the finalization of the stake, the user would be
able to withdraw their non-finalized stake. Even though there is a validation that the stake is
finalized (TokensFarmSDK.sol, line 1442), the issue still can occur in the cases when the user
has only one stake that is not yet finalized. The issue is marked as medium since only the
owner or the contract admin can execute these functions.

Post-audit.
The deposits that are not finalized can still be processed, potentially breaking the
`totalDeposits` variable, and user’s `totalActiveStakeAmount`.

Consider such a scenario:

 1)	The user has performed 3 different stakes with the following amounts:

 a)	Stake `0` with amount = 1 token.

 b)	Stake `1` with amount = 2 token.

 c)	Stake `2` with amount = 3 token.

 2)	Stake `0` and `2` are finalized, leaving stake `1` unfinalized.

 a)	`totalDeposits` is equal 1 + 3 = 4. (Since only stakes `0` and `2` are finalized.)

 3)	The user withdraws the amount of 3 tokens with the noticeReducedStakeWithoutStakeId()
function. In this case:

 a)	the amount of stake `0` will be equal 0.

 b)	the amount of stake `1` (unfinalized) will also be equal 0.

 c)	the amount of stake `2` will still be equal to 3.

 d)	`totalDeposits` will be equal to 1 (Despite the fact that there is a finalized stake `2` with
the amount of 3).

After this, the finalization of stake `1` will increase the `totalDeposits` despite the fact that the
amount of stake `1` is equal to 0 (Because stakedAmount is also stored in the deposit request
structure). And once `totalDeposits` is increased, the user will also be able to finalize stake `2`.

10

TokensFarm Smart Contract Audit

. . .
Post-audit 2.

A validation was added: in case `lastFinalisedStake[user]` > 0, stakeId to finalize should be
equal to `lastFinalisedStake[user] + 1`. Yet, there is still a case, when the user can finalize the
stake with the ID `0`, then stake with the ID `2` and won’t be able to finalize stake with the ID
`1`. Also, the user can finalize any stake at the very first time, thus not start with the stake `0`.

Post-audit 3.

Stakes can now be finalized only in the correct order.

Low-1

Unnecessary validation.

PerpetualTokensFarm.sol: function finaliseDeposit(), line 1156.

TokensFarm.sol: function finaliseDeposit(), line 1058.

PerpetualTokensFarmSDK.sol: function finaliseDeposit(), line 1076.

In PerpetualTokensFarm.sol and TokensFarm.sol, the `if` statement will never return false
since if the caller is not the owner, the transaction will revert to the `onlyOwner` modifier.

In the PerpetualTokensFarmSDK.sol contract, the function can be executed either by the
owner or the contract admin. In case the function is called by the contract admin, the value of
the local variable won’t be assigned to the `_user` parameter and will be equal to msg.sender
(which is the contract admin).

Recommendation:

Remove the unnecessary validation.

Post-audit.

In PerpetualTokensFarmSDK.sol, the validation was removed. In other contracts, functions can
now be called by the user, so the validation is necessary now.

11

TokensFarm Smart Contract Audit

. . .
Low-2

Internal functions are never used.

TokensFarmFactory.sol, TokensFarmSDKFactory.sol: functions _getFarmArray(),
_getFarmImplementation().

Functions are internal and are not used within the contract. However, they increase the size of
the contract.

Recommendation:

Remove unused functions.

Post-audit.

Functions will be used in the future updates of the contracts.

Low-3

Reduce without stake id might revert in case not the first stake was reduced with id.

TokensFarmSDK.sol, PerpetualTokensFarmSDK.sol: function
noticeReducedStakeWithoutStakeId().

In case the user has more than one stake and withdraws any stake but the first one,
`lastStakeConsumed[_user]` will be equal to this stake. When the user decides to withdraw
stakes using the noticeReducedStakeWithoutStakeId() function, it might revert in line 1463
since all the stakes before `lastStakeConsumed[_user]` will be skipped. The issue is marked as
low since the user can still withdraw their stakes separately with the noticeReducedStake()
function.

Recommendation:

Make sure that noticeReducedStakeWithoutStakeId() processes all actual stakes.

12

TokensFarm Smart Contract Audit

. . .
Post-audit.

The validation was added: `stakeId` is less or equal to `lastStakeConsumed[_user]` and greater
or equal to `lastStakeConsumed[_user] + 1`. However, there are cases now when the user
cannot withdraw all of their stake. For example:

 1)	The user has 4 stakes.

 2)	The user withdraws a part of stake `0`.

 3)	The user withdraws their stake `1`.

 4)	The user withdraws their stakes `2` and `3` without stake id.

 5)	The user can’t withdraw the rest of stake `0` due to “Must consume the next stake, can not
skip”.

Post-audit 2.

It is now verified that stakes can be reduced only in the correct order.

Info-1

Variables visibility is not explicitly marked.

PerpetualTokensFarm.sol: `idInList`.

PerpetualTokensFarmSDK.sol: `idInList`.

TokensFarm.sol: `idInList`.

TokensFarmSDK.sol: `idInList`.

For better code readability, it is recommended to explicitly mark visibility for all storage
variables and constants.

Recommendation:

Mark visibility for all variables and constants in the contracts.

13

TokensFarm Smart Contract Audit

. . .

Info-3

Unnecessary adding of 0.

TokensFarm.sol: function deposit(), line 1214.

TokensFarmSDK.sol: function deposit(), line 1159.

Adding `warmupPeriod` in both cases has no effect since it is previously checked that
`warmupPeriod` is equal to 0.

Recommendation:

Remove adding `warmupPeriod`.

Recommendation:

Move the numbers used in the code to storage constants.

From the client.

In order not to exceed the contract size limit, constants won’t be used.

Info-2

Storage constants should be used.

PerpetualTokensFarm.sol: lines 244, 245, 535, 536, 637, 654, 1066, 1562.

PerpetualTokensFarmSDK.sol: lines 240, 535, 616, 1559, 1387.

TokensFarm.sol: lines 233, 234, 525, 545, 987, 1188, 1558.

TokensFarmSDK.sol: lines 243, 530, 1588, 1396.

Number 40 and 100 should be moved to a separate storage constant.

14

TokensFarm Smart Contract Audit

. . .
Info-4

Finalizing pending deposit requests can be blocked.

TokensFarm.sol: function finaliseDeposit(), line 1063.

TokensFarmSDK.sol: function finaliseDeposit(), line 1026.

PerpetualTokensFarmSDK.sol: function finaliseDeposit(), line 1081.

PerpetualTokensFarm.sol: function finaliseDeposit(), line 1174.

There is a validation that `warmupPeriod` is not equal to 0 in these functions. However, in case
the owner sets `warmupPeriod` as 0 with the setWarmup() function, all pending deposit
requests will be blocked, preventing users from depositing and withdrawing their funds. The
issue is marked as informational since only the owner can change `warmupPeriod`.

Recommendation:

Verify that users’ funds can’t get blocked due to the changes of the warmup period.

Recommendation:

Use the waitingList array instead of `participants`.

Info-5

View function can be optimized.

TokensFarm.sol: function getAllPendingStakes(), line 690.

TokensFarmSDK.sol: function getAllPendingStakes(), line 649.

PerpetualTokensFarm.sol: function getAllPendingStakes(), line 777.

The function performs iteration through the whole participants array, which may consume
more gas than allowed per transaction. In order to reduce gas spendings, the `waitingList`
array can be used, which already contains all the users who have current deposit requests.

15

TokensFarm SmartContract Audit

. . .
Info-6

Redistributing rewards calculates more total rewards than there are on the
contract’s balance.

TokensFarm.sol: function withdraw(), line 1425.

TokensFarmSDK.sol: function _payoutRewardsAndUpdateState(), line 1246.

PerpetualTokensFarm.sol: function withdraw(), line 1437.

PerpetualTokensFarmSDK.sol: function _payoutRewardsAndUpdateState(), line 1245.

In case user’s pending reward is to be redistributed, the _fundInternal() function is called,
which increases the storage variable `totalRewards`. However, the actual reward balance
doesn’t increase since the same reward token is funded. This way, there can be a situation
when there are not enough rewards to pay to users. The ssue is marked as informational
since it dosn’t prevent thewithdrawal of stakes, but it can prevent collecting rewards for users.

Recommendation:

Update `totalRewards` correctly in case of the redistribution of pending rewards.

From the client.

The `totalRewards` variable doesn’t affect any calculations. It is intended functionality to
increase this variable during every redistribution.

16

TokensFarm Smart Contract Audit

. . .

Pass PassAccess Management Hierarchy

Pass Pass

PerpetualTokensFarmSDK.sol PerpetualTokensFarm.sol

Pass PassDelegatecall

Pass PassHidden Malicious Code

Pass PassUnchecked CALL Return
Values

Pass PassExternal Contract Referencing

Pass PassGeneral Denial Of Service (DOS)

Pass PassFloating Points and Precision

Pass PassSignatures Replay

Pass Pass
Pool Asset Security
(backdoors in the
underlying ERC-20)

Pass PassRe-entrancy

Pass PassUnexpected Ether

Pass PassDefault Public Visibility

Pass PassEntropy Illusion (Lack of Randomness)

Pass PassShort Address/Parameter Attack

Pass PassRace Conditions/Front Running

Pass PassUninitialized Storage Pointers

Pass PassTx.Origin Authentication

17

TokensFarm Smart Contract Audit

. . .

Pass PassAccess Management Hierarchy

Pass Pass

TokensFarmSDK.sol TokensFarm.sol

Pass PassDelegatecall

Pass PassHidden Malicious Code

Pass PassUnchecked CALL Return
Values

Pass PassExternal Contract Referencing

Pass PassGeneral Denial Of Service (DOS)

Pass PassFloating Points and Precision

Pass PassSignatures Replay

Pass Pass
Pool Asset Security
(backdoors in the
underlying ERC-20)

Pass PassRe-entrancy

Pass PassUnexpected Ether

Pass PassDefault Public Visibility

Pass PassEntropy Illusion (Lack of Randomness)

Pass PassShort Address/Parameter Attack

Pass PassRace Conditions/Front Running

Pass PassUninitialized Storage Pointers

Pass PassTx.Origin Authentication

18

TokensFarm Smart Contract Audit

. . .

Pass PassAccess Management Hierarchy

Pass Pass

TokensFarmFactory.sol TokensFarmSDKFactory.sol

Pass PassDelegatecall

Pass PassHidden Malicious Code

Pass PassUnchecked CALL Return
Values

Pass PassExternal Contract Referencing

Pass PassGeneral Denial Of Service (DOS)

Pass PassFloating Points and Precision

Pass PassSignatures Replay

Pass Pass
Pool Asset Security
(backdoors in the
underlying ERC-20)

Pass PassRe-entrancy

Pass PassUnexpected Ether

Pass PassDefault Public Visibility

Pass PassEntropy Illusion (Lack of Randomness)

Pass PassShort Address/Parameter Attack

Pass PassRace Conditions/Front Running

Pass PassUninitialized Storage Pointers

Pass PassTx.Origin Authentication

19

TokensFarm Smart Contract Audit

Contract: PerpetualTokensFarm
Deposit/Request deposit/Finalize deposit request

 	Deposit

✓ Should deposit tokens for user (136ms)
✓ Should revert deposit if warmup period is on (50ms)
✓ Should revert deposit if farm has ended (58ms)
✓ Should update firstDepositAt only at the first deposit (108ms)
✓ Should collect flat fee during depositing (62ms)
✓ Should revert deposit if msg.value != flatFeeAmountDeposit (53ms)
✓ Should collect stake fee (71ms)
✓ Should revert if amount == 0
Make deposit request

✓ Should make deposit request (72ms)
✓ Should revert make deposit request if warmup is off
✓ Should revert make deposit request if reward will end after warmup
✓ Should update firstDepositAt only once during making a deposit request (78ms)
✓ Should collect flat fee during making a deposit request (47ms)
✓ Should revert make deposit request if msg.value != flatFeeAmountDeposit
✓ Should collect stake fee (48ms)
✓ Should revert if amount equals 0
Finalize deposit

✓ Should finalize user's deposit request (78ms)
✓ Should revert finalizing deposit request if warmup period is 0 (47ms)
✓ Should revert finalizing deposit request if warmup period is not yet finished (41ms)
✓ Should finalize one of user's deposit requests (160ms)
✓ Should remove user from waiting list (198ms)
✓ Should revert finalizing if user has not deposit requests (45ms)

As a part of our work assisting TokensFarm in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as the review of the TokensFarm
contract requirements for details about issuance amounts and how the system handles these.

Tests written by Zokyo Security

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

20

TokensFarm Smart Contract Audit

Withdraw/Make withdraw request/Emergency withdraw

 	 Withdraw

✓ Should withdraw (107ms)
✓ Should revert if minimal time to stake is not respected (45ms)
✓ Should burn user's pending if minimal time to stake is not respected and penalty

 should be burnt (92ms)
✓ Should redistribute user's pending if minimal time to stake is not respected and

 penalty should be redistributed (79ms)
✓ Should burn user's pending if staking is ended and penalty should be redistributed (97ms)
✓ Should cover ETH commission if flat fee is allowed (71ms)
✓ Should revert if msg.value != flatFeeAmountWithdraw when flat fee is allowed (67ms)
✓ Should collect rewards without fee (73ms)
✓ Should revert withdraw if amount is greater than staked amount (41ms)
Make withdraw request
✓ Should make withdrawal request (82ms)
✓ Should revert make withdrawal request if whole stake amount is already withdrawn (69ms)
✓ Should revert make withdrawal request if cooldown is 0 (43ms)
✓ Should revert make withdrawal request if stake is not finalized (46ms)
✓ Should revert make withdrawal request if minimal time to stake was not respected (51ms)
✓ Should revert make withdrawal request if amount is greater than stake amount (51ms)
✓ Should make withdrawal request for different stakes (103ms)
✓ Should finalize withdrawal request (95ms)
✓ Should revert finalizing withdrawal request if request wasn't made for provided id (136ms)
✓ Should not finalize withdrawal request if cooldown has not passed yet (67ms)

 Emergency withdraw
✓ Should withdraw in case of emergency (142ms)
✓ Should revert emergency withdraw if minimal time to stake is not respected (40ms)

 Perpetual functionality
✓ Should deposit and claim rewards in correct epoch (197ms)
✓ Should revert start new epoch if current epoch is not ended
✓ Should revert start new epoch if start time is less than block.timestamp
✓ Should revert start new epoch if reward fee percent is greater than 100

 Contract: PerpetualTokensFarmSDK

Deposit/Request deposit/finalize deposit

 	 Deposit

✓ Should deposit tokens for user (53ms)
✓ Should revert deposit if warmup period is on
✓ Should revert deposit if farm has ended
✓ Should update firstDepositAt only at the first deposit (41ms)
✓ Should collect flat fee during depositing
✓ Should revert deposit if msg.value != flatFeeAmountDeposit

. . .

21

TokensFarm Smart Contract Audit

✓ Should not update ATH stake if deposited amount is less than ATH stake amount (43ms)
✓ Should revert if epoch hasn't started yet
Request deposit
✓ Should make deposit request
✓ Should revert make deposit request if warmup is off
✓ Should revert make deposit request if reward will end after warmup
✓ Should update firstDepositAt only once during making a deposit request
✓ Should collect flat fee during making a deposit request
✓ Should revert make deposit request if msg.value != flatFeeAmountDeposit

 Finalize deposit
✓ Should finalize user's deposit request (50ms)
✓ Should revert finalizing deposit request if warmup period is 0
✓ Should revert finalizing deposit request if warmup period is not yet finished
✓ Should finalize one of user's deposit requests (104ms)
✓ Should remove user from waiting list (127ms)
✓ Should revert finalizing if user has not deposit requests

 Notice reduced stake with stake id

✓ Should notice reduced amount (87ms)
✓ Should revert notice reduced stake if deposit request is not finalized
✓ Should revert notice reduced stake if withdraw amount > stake amount
✓ Should revert if minimal time to stake is not respected
✓ Should burn user's pending if minimal time to stake is not respected and penalty
 should be burnt (78ms)
✓ Should redistribute user's pending if minimal time to stake is not respected and
penalty should be redistributed (62ms)
✓ Should burn user's pending if staking is ended and penalty should be redistributed (90ms)
✓ Should cover ETH commission if flat fee is allowed (52ms)
✓ Should revert if msg.value != flatFeeAmountWithdraw when flat fee is allowed (44ms)

 Notice reduce stake without stake id

✓ Should reduce user's stakes amount (81ms)
✓ Should revert if user tries to withdraw more than he deposited
✓ Should reduce stake with id and then the rest of stake without id (161ms)
✓ Should not reduce stakes in not finalized stakes (161ms)
✓ Should revert if user has only one stake and it is not finalized yet
✓ Should withdraw a single user's stake (51ms)

 Perpetual functionality

✓ Should deposit and claim rewards in correct epoch (142ms)
✓ Should revert start new epoch if current epoch is not ended
✓ Should revert start new epoch if start time is less than block.timestamp
✓ Should revert start new epoch if reward fee percent is greater than 100

. . .

22

TokensFarm Contract Audit

Contract: TokensFarm
Deposit/Request deposit/Finalize deposit request

 	Deposit

✓ Should deposit tokens for user (71ms)
✓ Should revert deposit if warmup period is on
✓ Should revert deposit if farm has ended
✓ Should update firstDepositAt only at the first deposit (63ms)
✓ Should collect flat fee during depositing (46ms)
✓ Should revert deposit if msg.value != flatFeeAmountDeposit
✓ Should collect stake fee (45ms)
✓ Should revert if amount == 0
Make deposit request

✓ Should make deposit request 53ms)
✓ Should revert make deposit request if warmup is off
✓ Should revert make deposit request if reward will end after warmup
✓ Should update firstDepositAt only once during making a deposit request (60ms)
✓ Should collect flat fee during making a deposit request (40ms)
✓ Should revert make deposit request if msg.value != flatFeeAmountDeposit
✓ Should collect stake fee (47ms)
✓ Should revert if amount equals 0
Finalize deposit

✓ Should finalize user's deposit request (66ms)
✓ Should revert finalizing deposit request if warmup period is 0 (54ms)
✓ Should revert finalizing deposit request if warmup period is not yet finished (47ms)
✓ Should finalize one of user's deposit requests (149ms)
✓ Should remove user from waiting list (174ms)
✓ Should revert finalizing if user has not deposit requests (41ms)

. . .

Withdraw/Make withdraw request/Emergency withdraw

 	 Withdraw

✓ Should withdraw (91ms)
✓ Should revert if minimal time to stake is not respected (39ms)
✓ Should burn user's pending if minimal time to stake is not respected and penalty

 should be burnt (81ms)
✓ Should redistribute user's pending if minimal time to stake is not respected and

 penalty should be redistributed (72ms)
✓ Should burn user's pending if staking is ended and penalty should be redistributed (102ms)
✓ Should not pay pendingReward if it is 0 (68ms)
✓ Should cover ETH commission if flat fee is allowed (67ms)
✓ Should revert if msg.value != flatFeeAmountWithdraw when flat fee is allowed (56ms)
✓ Should collect rewards without fee (69ms)

23

TokensFarm Contract Audit

✓ Should revert withdraw if amount is greater than staked amount (38ms)
Make withdraw request

✓ Should make withdrawal request (87ms)
✓ Should revert make withdrawal request if whole stake amount is already withdrawn (76ms)
✓ Should revert make withdrawal request if cooldown is 0 (47ms)
✓ Should revert make withdrawal request if stake is not finalized (49ms)
✓ Should revert make withdrawal request if minimal time to stake was not respected (43ms)
✓ Should revert make withdrawal request if amount is greater than stake amount (56ms)
✓ Should make withdrawal request for different stakes (118ms)
✓ Should finalize withdrawal request (102ms)
✓ Should revert finalizing withdrawal request if request wasn't made for provided id (123ms)
✓ Should not finalize withdrawal request if cooldown has not passed yet (80ms)

 Emergency withdraw

✓ Should withdraw in case of emergency (140ms)
✓ Should revert emergency withdraw if minimal time to stake is not respected (38ms)

Contract: TokensFarmSDK
Deposit/Request deposit/Finalize deposit

 	Deposit

✓ Should deposit tokens for user (53ms)
✓ Should revert deposit if warmup period is on
✓ Should revert deposit if farm has ended
✓ Should update firstDepositAt only at the first deposit (40ms)
✓ Should collect flat fee during depositing
✓ Should revert deposit if msg.value != flatFeeAmountDeposit
✓ Should not update ATH stake if deposited amount is less than ATH stake amount (41ms)

. . .

Request deposit
✓ Should make deposit request
✓ Should revert make deposit request if warmup is off
✓ Should revert make deposit request if reward will end after warmup
✓ Should update firstDepositAt only once during making a deposit request
✓ Should collect flat fee during making a deposit request
✓ Should revert make deposit request if msg.value != flatFeeAmountDeposit

 Finalize deposit
✓ Should finalize user's deposit request (51ms)
✓ Should revert finalizing deposit request if warmup period is 0
✓ Should revert finalizing deposit request if warmup period is not yet finished
✓ Should finalize one of user's deposit requests (107ms)
✓ Should remove user from waiting list (167ms)
✓ Should revert finalizing if user has not deposit requests

24

TokensFarm Contract Audit

 Notice reduced stake with stake id

✓ Should notice reduced amount (87ms)
✓ Should revert notice reduced stake if deposit request is not finalized
✓ Should revert notice reduced stake if withdraw amount > stake amount (40ms)
✓ Should revert if minimal time to stake is not respected
✓ Should burn user's pending if minimal time to stake is not respected and penalty
should be burnt (83ms)

✓ Should redistribute user's pending if minimal time to stake is not respected and
penalty should be redistributed (61ms)

✓ Should burn user's pending if staking is ended and penalty should be redistributed (81ms)
✓ Should not pay pendingReward if it is 0 (60ms)
✓ Should cover ETH commission if flat fee is allowed (47ms)
✓ Should revert if msg.value != flatFeeAmountWithdraw when flat fee is allowed (48ms)

 Notice reduce stake without stake id

✓ Should reduce user's stakes amount (91ms)
✓ Should revert if user tries to withdraw more than he deposited
✓ Should reduce stake with id and then the rest of stake without id (156ms)
✓ Should not reduce stakes in not finalized stakes (162ms)
✓ Should revert if user has only one stake and it is not finalized yet
✓ Should withdraw a single user's stake (54ms)

165 passing (12s)

. . .

We are grateful for the opportunity to work with the TokensFarm
team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the TokensFarm team put in place a bug
bounty program to encourage further analysis of the smart contract
by third parties.

